
SINGAPORE POLYTECHNIC
SCHOOL OF COMPUTING

PROJECT NO. DISM/2023/3A67

APPLYING LARGE LANGUAGE MODELS
TO SOURCE CODE BUG-FINDING

AUGUST 2023



PROJECT NO. DISM/2023/3A67

APPLYING LARGE LANGUAGE MODELS
TO SOURCE CODE BUG-FINDING

SUBMITTED BY:

2104047 Isaac Choong Zhu En

2104162 Tay Kai Zer

2128524 Aldrich Tan Kai Rong

2128748 Edison Chan Whye Kit

2128834 Ryan Sng

A REPORT SUBMITTED IN PARTIAL FULFILMENT
OF THE SUBJECT ST2601 (ITSP)

Project Supervisor: Mr Calvin Siak

SCHOOL OF COMPUTING
SINGAPORE POLYTECHNIC

500 DOVER ROAD
SINGAPORE 139651



Acknowledgements
The team would like to thank our external sponsor, Defence Science Organisation
(DSO) National Laboratories, for providing us with a meaningful project to work on. It
was an enriching and rewarding experience for the team, allowing us to hone our
skills in the field of Artificial Intelligence and Cyber Security. Additionally, the team
would like to offer a special acknowledgement to Dr Khoo Wei Ming and Ms Poh
Hui-Li Phyllis for dedicating their time for bi-weekly meetings to catch up with the
team’s progress and provide invaluable feedback. Their deep knowledge and
industry insights have aided the team’s progress tremendously.

Moreover, the team would like to extend our sincere gratitude to our internal
supervisor, Mr Calvin Siak for his guidance and mentorship. His feedback and
expertise in Infosec Project Development and Management Project (ITSP) have
propelled our team forward, enabling us to overcome numerous obstacles on our
journey to the end of ITSP. Mr Siak’s commitment to the team has presented
numerous priceless learning opportunities for growth and development.

Lastly, the team would like to express our gratitude to Mr Mohamed Uvaise, the
Module Coordinator of ITSP for ensuring a seamless and well-coordinated journey
throughout ITSP. His prompt replies to emails ensured that the team’s inquiries were
swiftly addressed and resolved. Mr Mohamed Uvaise's project management
resources have been instrumental in fostering excellent coordination in the team’s
project management efforts.

Once again, the team wishes to express our utmost gratitude to all individuals who
have played a crucial role in our ITSP. All contributions have been vital to our
progress, and the team is thankful for the guidance and support throughout the
project. The team believes that the experiences and knowledge imparted will be
invaluable.

i



Abstract
Purpose : The purpose of the project is to research the effectiveness

of Large Language Models in supplementing deep
learning-based Vulnerability Detection in source code.

Brief Description of
Project

: It aims to study the performance of Large Language
Models for curating datasets of vulnerable functions by
classifying vulnerability-fixing commits. It assesses Large
Language Models trained on these curated datasets for
Vulnerability Detection. This provides empirical evidence
to demonstrate the effectiveness of Large Language
Models.

Conclusion/
Recommendations

: Through qualitative analysis, the team showed that Large
Language Models can automatically curate accurate,
diverse, and large datasets of vulnerable functions. The
work in this paper can be used to streamline Vulnerability
Detection research efforts and significantly reduce time
spent on laborious labelling tasks.
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1 Introduction
As more corporations integrate digital technology into their business processes, their
reliance on robust and secure software solutions becomes paramount. Tech giants
such as Intel, Google, and Facebook employ their software engineers and security
specialists to improve the security of not only their products but also open-source
software, such as the Linux kernel [1]. Nevertheless, secure code reviews are prone
to human error which can lead to drastic consequences.

The process of discovering security issues in software largely falls under static or
dynamic analysis. For the former, traditional approaches involve manually combing
through source code or using automated tools such as Cppcheck and Joern to
identify vulnerabilities. However, these methods incur large amounts of man-hours,
have high rates of false positives and negatives, or require advanced expertise. As
such, many security researchers [2] - [4] have explored the use of Deep Learning
(DL) techniques for automated source code Vulnerability Detection (VD).

According to Ahmed et al. [5], an obstacle in VD with DL is the difficulty of curating
quality training and evaluation data or the lack thereof. Quality implies diversity and
volume which directly influences the performance of DL models. However, curating
such datasets requires advanced security knowledge, which even then is still
susceptible to human error.

Moreover, a significant amount of time has to be invested. For instance, Zhou et al.
[2] invested over 600 man-hours of several professional security experts to label
48,000 commits. Furthermore, in the realm of security, the freshness of datasets is
crucial to stay relevant to current software vulnerability trends; one-off manually
labelled datasets become outdated as new vulnerabilities are discovered.

Therefore, like the need for automated source code VD, there is an equal need for
automated dataset curation of vulnerable source code.

1.1 Objectives

The purpose of this project is to research the application of Large Language Models
(LLMs) for supplementing DL-based VD with source code. In particular, the team
intends to explore the effectiveness of LLMs in classifying Git commits for dataset
curation. Then, the team will enrich established ground-truth datasets by adding
commits classified by these LLMs. Lastly, the team will assess the VD performance
of LLMs on these original and enriched datasets to demonstrate the effectiveness of
LLMs.

1.2 Scope

The project will focus on C/C++-related source code and commits as these
programming languages account for more than 50% of reported open-source
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vulnerabilities [6]. Additionally, the team will mainly be extracting data from GitHub
repositories as it is the largest Git repository provider. GitHub repositories that are
specifically chosen by the team throughout the report are large repositories with well
established contributor guidelines, which ensures that commits within these
repositories are high quality.

1.3 Contributions

This paper makes the following contributions:

● The team releases a dataset of 3,500 Vulnerability-Fixing Commits (VFCs),
curated from 10 distinct C/C++ repositories on GitHub that took 40 man-hours
of manual labelling. The team enriched this dataset by amassing 4 prominent
VFC datasets: BigVul, Devign, CVEfixes, and Linux Kernel CVEs, totalling
36,625 commits. The team’s compiled dataset is publicly available to help
further research.1

● The team experimented with two state of the art (SOTA) LLMs for classifying
VFCs: DistilBERT and StarEncoder. The best of which, StarEncoder,
achieved an F1 score of 97.77% and 90.00%, and an accuracy of 97.70% and
89.79% on evaluation and test datasets respectively. On average,
StarEncoder scored 21.59% and 26.43% higher in accuracy and F1 when
compared to other VFC classification models and methods.

● The team incorporated the fine-tuned StarEncoder model into a VFC
classification tool, along with function extraction capabilities. This tool can be
used to curate large datasets of vulnerable functions to aid researchers in
DL-based VD.2

● The team applied the VFC classifier tool to double the size of Devign, a
ground-truth dataset of vulnerable functions. This tool only took 2 hours to
classify 639,278 commits and extract 503,320 functions while the authors of
Devign took 600 man-hours to manually label 25,872 commits and extract
27,318 functions. The team then trained StarEncoder on this enlarged dataset
for VD, and observed an increase in the F1 and accuracy scores by 13% and
12% compared to the same model trained on the original dataset.

● The team’s experiments show that by balancing vulnerable function classes,
deduplicating functions by their label, and using suitable SOTA Encoders, the
team managed to train a model that achieved an F1 score of 89%, which on
average is 48% higher than existing models and VD tools.

2 https://github.com/neuralsentry/vulnfix-commit-llm-classifier

1 https://huggingface.co/datasets/neuralsentry/bigvul_devign_cvefixes_neuralsentry_commits
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2 Background

2.1 Project Background

This project was sponsored by Defense Science Organisation (DSO) National
Laboratories under the guidance of Mr Khoo Wei Ming and Ms Poh Hui-Li Phyllis.

The original objective of the project aimed to use OpenAI’s GPT-3 to detect bugs in
source code. However, after additional research and consideration, the team and
sponsors decided to broaden the scope of the project. The team pivoted towards
training and evaluating open-source LLMs for DL-based VD. Additionally, the team
deployed the same LLMs to curate datasets of vulnerable source code to
supplement these VD objectives.

The shift in objectives emerged during the first two weeks of project planning with the
team’s sponsors (Refer to Appendix C). The team examined the constraints of
closed-source LLMs such as OpenAI’s GPT-3, which included financial costs,
inability to tweak model parameters, and lack of support for fine-tuning and transfer
learning, which led to the decision of exploring open-source LLMs.

The team identified that utilising open-source LLMs necessitated quality training
datasets. However, such datasets were either scarce or, if publicly available, often
had inherent limitations. It was the team’s sponsors who suggested the idea of
exploring DL-based Natural Language Processing (NLP) techniques using LLMs to
classify Git commit messages. The rationale behind this was the potential of this
approach to yield higher quality and quantity datasets compared to current methods.

2.2 Related Work

2.2.1 Deep Learning-based Vulnerability Detection
Convolutional and Recurrent Neural Networks
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are
widely adopted for DL. Although these models excel at computer vision and audio,
the same can not be said for NLP.

The first issue is that CNNs and RNNs are not capable of handling long-range
dependencies. Simply put, these neural networks have trouble understanding natural
language.

The second issue is that these neural networks take longer to train because of their
sequential processing nature. When Russel et al. [7] evaluated for VD, RNNs and
CNNs achieved an F1 score of 53% and 54% respectively using real-world source
code from GitHub.
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Large Language Models
In recent works, the Transformer architecture pioneered by Vaswani et al. [8] has
gained prominence in NLP, majorly outperforming CNNs and RNNs. Transformers
allow for increased training speed from parallelisation and better contextualisation
and understanding of textual data through the self-attention mechanism. For these
reasons, Transformers can be trained on a very large corpora of data, while making
sense of the data, resulting in the rise of LLMs. For instance, OpenAI’s GPT-4,
Meta’s LLaMA, and Google’s Bard, all utilise the Transformer architecture and are
trained on several terabytes of data.

To the best of the team's knowledge, as of current, DiverseVul’s papers [9] has
presented the most recent and comprehensive evaluation of LLMs for VD. The paper
conducted a qualitative analysis of several LLM transformer-based architectures:
Encoder, Decoder, and Encoder-decoder. Additionally, the researchers curated their
own dataset to establish a baseline for comparing different model architectures.

Their results showed that encoder-decoder models, CodeT5 and NatGen,
outperformed a pure encoder model, CodeBERT, by scoring 48% and 43%
respectively. However, these results are surprising as encoder models are typically
more performant at text classification tasks while encoder-decoder models are
usually associated with input/output-dependent tasks such as language translation.
For decoder models from the GPT-2 family, they scored an F1 score of 40% which
was expected as decoders were less effective at text classification and were more
suited for text generation.

None of the Encoder models used were pre-trained on C/C++ whereas CodeT5 and
NatGen were. In the paper, they mentioned that pre-training on C/C++ has little
impact on VD performance as the GPT models they evaluated which were
pre-trained on C/C++ performed no better than Encoder models. However,
comparing the impact of pre-training between GPT Decoder models and Encoder
models is not so straightforward, which may have led to their inconclusive results.

Graph Neural Networks
Graph Neural Networks (GNNs), despite being introduced in 2005, are an emerging
DL architecture for VD. This rise in popularity can be attributed to the fact that source
code can be represented as graphs; a well-known graph representation is the Code
Property Graph (CPG) which is an amalgamation of the Abstract Syntax Tree (AST),
Control Flow Graph (CFG), and Program Dependence Graph (PDG). However,
DiverseVul [9] found that LLMs still outperform current GNNs for VD, achieving an
F1 score of 49% and 29% respectively. As such, the focus of this paper will remain
on LLMs, though these scores could change as GNNs continue to be researched
and refined.

2.2.2 Dataset Curation for Vulnerability Detection
The DiverseVul paper conducted extensive research on VD using multiple DL
models.
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It identified the essential attributes of a quality dataset for VD: diversity and volume.
By expanding the quantity of vulnerable and non-vulnerable functions (i.e., volume)
from 168,089 to 552,783, and the number of source code repositories (i.e., diversity)
from 564 to 945, the F1 score of an LLM saw an increase from 10.5% to 48.9%.

Another important characteristic is the organicness of a dataset. Numerous papers
[2], [9], [10] highlighted that synthetically generated datasets do not portray
real-world source code, thereby hindering VD performance.

Moreover, the accuracy of a dataset is without doubt important as inaccurately
labelled data can lead to false positives and negatives.

Last but not least, the freshness of a dataset is crucial, especially in the context of
security where vulnerability trends are constantly changing. As such, manually
labelled datasets become outdated over time as they require a lot of effort to be
updated regularly. Therefore, the ability to automate most, if not all, of the dataset
curation process promotes freshness.

A notable factor that influences the accuracy of these datasets is known as
granularity, which pertains to how data is classified. There are two commonly
mentioned types of granularity in the context of VD. Function granularity involves
classifying vulnerable source code by examining and extracting functions.
Conversely, commit granularity involves classifying Git commit messages and
retrieving the vulnerable source code from the commit’s code difference. However,
the latter approach faces label noise issues [11], which refers to errors in labelling.
These errors are not introduced by the specific commit granularity method used, but
by the inherent issue of knowing which functions in a commit are responsible for a
vulnerability. For instance, In Devign [2], the researchers assumed all modified
functions to be vulnerable, which is not always the case. In DiverseVul, all
non-modified functions were considered non-vulnerable, which is also not always
true.

In existing literature, a multitude of methods for curating datasets of vulnerable
source code have been researched. While each method aims to address at least one
or more the aforementioned dataset characteristics, none have addressed all five
concurrently. These curation methods can generally be classified into four
categories: synthesis, static analysis, security issue collection, and DL. Furthermore,
each of these methods employ different granularity techniques. The following
subsections will discuss these curation methods and their associated granularity
types, analysing their merits and potential limitations.

Synthesis
The synthesis method is a function granularity method that involves handcrafting
vulnerable source code. This approach diverges from other methods that typically
rely on labelling existing code or commits. One clear advantage of synthetic datasets
lies in their high accuracy.
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However, there are many drawbacks. For one, although the size and diversity of
synthetic datasets can be large, it relies heavily on a researcher’s ability to create
varied samples and the amount of time they are willing to dedicate. Furthermore,
synthesis is a labour-intensive process, meaning that these datasets are often not
updated frequently, impacting their freshness. On top of that, their artificial nature
does not accurately represent the diversity and complexity of real-world software,
causing them to be inherently inorganic.

One prominent example is the Juliet Test Suite, which is a collection of
synthetically-made vulnerable C/C++ source code [12]. Its primary purpose was to
evaluate security assurance tools such as Cppchecker [13], Flawfinder [14], and
Joern [15]. However, several researchers have tried using the test suite for training
VD models, which was not its original intention [10]. Black [16], an author of Juliet,
acknowledged that the test suite could be improved by making its data more organic.
He suggested that injecting synthetic bugs into production source code would better
emulate real-world software. For these reasons, it is becoming less common to see
researchers use synthetic datasets for DL-based VD.

Static Analysis
When implemented at the function granularity level, static analysis involves running
tools that examine source code based on a set of predefined rules and conditions.
Once vulnerable lines of code are identified, their corresponding parent functions can
be extracted. A significant advantage of static analysis is its capability for
automation. As such, static analysis can yield fresh datasets and be kept up to date
with an existing codebase. Additionally, automation allows static analysis to classify
large quantities of functions. Furthermore, the datasets from static analysis are
organic because these tools can be run on genuine source code.

However, there are some limitations. Like the synthesis method, function-level static
analysis often results in less diverse datasets. This is because the variety of
identifiable functions is limited by the researcher’s ability to engineer diverse rules
and conditions. Moreover, these tools are known for being inaccurate due to high
rates of negatives and their inability to classify unknown vulnerabilities [17].

Draper [7] exemplifies the use of static analysis for curating datasets. This dataset
contains a collection of vulnerable functions which were curated using three static
analysis tools: Clang, Cppcheck, and Flawfinder. About 13 million vulnerable and
non-vulnerable functions were extracted from public repositories on GitHub and the
Debian Linux distribution. Despite being employed by other researchers for
DL-based VD [18], the Draper dataset is criticised for its low label accuracy [9].

Static analysis can also operate at the commit granularity level, with most methods
utilising regular expressions to classify commit messages based on specific
keywords. Figure 1 provides an example of the filters used in LICA [19], a tool
designed to extract VFCs from the Linux kernel repository. The use of keywords is
essentially a rule-based method, therefore this approach shares the same
advantages and disadvantages as function level static analysis.
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Figure 1
LICA keyword filters [19]

For instance in the Devign paper [2], the researchers utilised regular expressions to
extract data from five repositories on GitHub: Linux, Qemu, Wireshark, and FFmpeg.
They used keywords that contained terminologies referenced in these different
libraries (Refer to Appendix A) . This demonstrates the lack of diversity in static
analysis methods as library-specific keywords had to be used in order to capture a
broader range of commits. Moreover, the researchers acknowledged the inaccuracy
of regular expressions and had to undergo an additional round of labelling manually
after the initial data collection.

Security Issue Collection
Within the software domain, security issues are vulnerabilities reported by users.
Many organisations maintain and track these issues in databases. For instance, the
National Vulnerability Database (NVD) is the largest publicly available database of its
kind [20]. The NVD is a live mirror of the Common Vulnerabilities and Exposure
(CVE) database and also includes additional metadata such as the Common
Vulnerability Scoring System (CVSS), CommonWeakness Enumeration (CWE), and
most importantly, the Git commit hashes associated with vulnerability patches, which
makes security issue collection a commit granularity approach.

The advantage of security issue collection is in its accuracy as security experts vet
each reported issue before they are included in the database. The diversity of this
approach is significant as security issues span a wide range of vulnerabilities,
programming languages, operating systems, and et cetera. Furthermore, this
method guarantees organicness since all security issues stem from real-world
software. Finally, security issue collection is an automatable process, thereby
allowing the dataset to be continuously updated, and thereby contributing to its
freshness.

Nonetheless, there exist several limitations to this approach. Although the NVD
contains over 200,000 CVEs, a considerable amount of entries do not include the
commit hash to their patches. Therefore, this limits the amount of vulnerabilities that
can be extracted. Additionally, the occurrence of silent patches is well documented
[21]. These refer to vulnerabilities or flaws that have been corrected with patches
without public disclosure. As such, security issue collections cannot capture this
data.
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In 2023, Bhandari et al. [10] developed a tool called CVEFixes. It automatically
collects commits and corresponding vulnerable source code from the NVD. It is built
incrementally which means it can include new changes to the NVD to its existing
dataset. However, the researchers mentioned that 20% of CVEs do not reference
their patch fix, therefore limiting the volume of data that can be collected.

One last issue with security issues is that derivative datasets naturally only contain
VFCs. For example, BigVul [22] crawled several CVE repositories and gathered
4,310 VFCs, but 0 non-VFCs.

Deep Learning
DL is the latest SOTA approach for curating VD datasets for DL. By leveraging the
innate ability of neural networks to form patterns across multiple data points, using
DL for processing large amounts of data is one of the most popular ways to utilise it.

With DL, any relevant raw data can be easily turned into meaningful information; for
example, Git commits. A Git commit by itself isn’t meaningful enough without any
type of labelling. Without a human interpreter who has a vast knowledge of the
domain, a layman would not be able to tell if a commit is a vulnerability fix accurately.
By utilising a well-trained DL model, the labelling can be done with accuracy and
efficiency, performing much faster than what manual labour can achieve. When
compared to other methods, DL is able to accomplish all the advantages of each
method to a certain extent.

Git commits are virtually infinite and diverse. Github, one of the largest code hosting
platforms utilising the Git version control system, has over 100 million repositories,
each packed full of commits by millions of unique users spanning decades. Popular
open-source software used in production environments like the Linux Kernel is
hosted on GitHub too.

By training a high-quality DL model focused on classifying Git commits, automating
classification can be faster and more accurate than manual labour or static methods,
which have the tendency to miss edge cases that otherwise could be crucial data
points.

However, it is not a perfect solution. There are a multitude of methods to train
deep-learning models. While there are benchmarks and papers that showcase which
method is best for a use case similar to commit classification, countless new
methods are being introduced over time, and something considered SOTA can be
quickly replaced by newer research.

Not only that, one also needs to decide what data points to put in the training
dataset. Putting too many types of data can confuse the DL algorithm, making it
perform worse. With Git commits, there are a few data types for consideration; for
example: commit message, code diff, commit author and etcetera.
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3 Requirement Analysis

3.1 Problems

DL is the forefront for SOTA VD, which requires the availability of quality data
infrastructure in order to train an effective model. Data infrastructures refers to
existing high-quality datasets, and the tools used to curate them. However, current
methods do not have the ability to build such quality datasets. They either lack
volume, diversity, accuracy, organicness, or freshness. Table 2 summarises these
methods used by past researchers to create datasets of vulnerable source code.

Manually engineered datasets are highly accurate and diverse when created by
professional security researchers. However, they are often small because of the
laborious process and its inability to be automated. Moreover, the data is not organic
which affects a DL VD model’s ability to generalise to real-world data.

Automated static analysis techniques at the function and commit level are able to
scale to large volumes of data, and can be run on real-world source code or
commits. However, they are rule-based approaches which restrict the diversity of
data collected. Whatsmore, they have high rates of false positives and false
negatives.

Conversely, manual static analysis is able to achieve higher accuracy when
conducted by trained security professionals. However, this requires strenuous efforts
which results in a curation of smaller datasets. This is why Devign combined both
automated and manual to curate a large, accurate, and organic dataset for their
research. Nonetheless, combining both methods does not address the automatability
concerns.

Security issue collection methods can automatically curate diverse, accurate, and
organic datasets. However, a significant amount of source code vulnerabilities are
not publicly announced or tracked. Hence, this method misses out on a potentially
large amount of vulnerabilities.

DL techniques are objectively the most effective solution for dataset curation.
However, their performance is dependent on the dataset they are initially trained on.
There are many methods to curate this preliminary training dataset. For instance,
one could manually label a few thousand commits or use the other aforementioned
methods. Nevertheless, how good the trained model is at the end is heavily
influenced by the quality of the training dataset.

9



Table 2
Summary of Different Dataset Curation Methods

Method Type Granularity Attributes

Hand-engineered
Code

E.g. Juliet Test
Suite

Synthesis Function Large
Diverse
Accurate
Organic
Automatable

Code Analysis
Tools

E.g. Joern,
Cppcheck,
Flawfinder

Static Analysis Function Large
Diverse
Accurate
Organic
Automatable

Regular
Expression

E.g. LICA

Static Analysis Commit Large
Diverse
Accurate
Organic
Automatable

Manual Labelling

E.g. Devign

Static Analysis Commit Large
Diverse
Accurate
Organic
Automatable

Proper Commit
Linting

E.g. SECOMLINT

Static Analysis Commit Large
Diverse
Accurate
Organic
Automatable

Web Scraping

E.g. CVEfixes,
BigVul, Linux
Kernel CVEs

Security Issue
Collection

Commit Large
Diverse
Accurate
Organic
Automatable

Natural Language
Processing

Deep Learning Commit Large
Diverse
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Commit
Classification

E.g. PatchRNN,
word2vec

Accurate
Organic
Automatable

As shown above, curating datasets with DL techniques is the most effective solution.
However, existing methods use older DL technologies to do so. This is evident by
their low accuracy and F1 scores, illustrated in Table 3.

Table 3
DL Dataset Curation Performance

Method Dataset Accuracy F1

Random Forest +
Class Balancer
[23]

NVD, C Language 54.75% 0.485

CodeBERT +
RoBERTa [24]

900Repo Dataset,
Mixed Language

87.4% 0.839

PatchRNN
[25]

PatchDB, C and
C++ Language

83.57% 0.747

3.2 Proposed Solution

The team proposed that by using SOTA Transformer architecture models, we can
outperform existing commit classification techniques. The team uses Transformers
as it is currently the most prominent and effective DL architecture for NLP. Thus, it
will allow us to create highly performant models for dataset curation which will assist
security researchers in creating powerful DL VD models.

First the team will build a ground-truth dataset that combines several publicly
available datasets of VFCs. Then, the team will perform transfer learning on SOTA
Transformer models with the dataset for VFC classification, and evaluate its
performance relative to existing solutions. By combining the different datasets, it
results in a more diverse training source for DL models.

Next, the team will incorporate the trained VFC classification model into a prototype
tool. This tool will be used to create a very large and diverse dataset of vulnerable
functions.

Lastly, the team will measure the difference in VD performance between two models.
The first is trained on a ground-truth dataset, and the second is trained on the same
ground-truth dataset and the curated dataset. If the team’s experiments return
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positive results, it thus demonstrates the effectiveness of the team’s approach to
DL-based dataset curation.

3.3 Research Questions

Apart from the team’s proposed solution, the team also researched two main
questions that emerged during the course of this project.

Firstly, the team aims to determine if Encoder-based Transformers are able to
produce large well-labelled datasets. By utilising a ground truth unseen dataset
like Linux Kernel CVEs, the team will be able to assess the accuracy of the trained
model on organic data.

Secondly, the team aims to determine if Encoder-based Transformers can
outperform other architectures in VD. In DiverseVul, they demonstrated the
Encoder-Decoder models outperformed Encoder models in VD. However, according
to the team’s research, Encoders should be the most effective architecture for
classification tasks. This discrepancy may be a result of their comparison between
Encoder-decoders pre-trained on C/C++, and Encoders that were not. Additionally,
DiverseVul uses heavily imbalanced datasets which negatively affects the
performance of VD [26], [2].
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4 Investigation Stage
This section contains all prerequisite research, methodologies, and actions that lead
to the team’s experiments and findings in Section 5. Figure 2 gives an overview of
the project’s investigation workflow.

Figure 2
Project Objectives

4.1 Data Preparation

To explore the application of LLMs for automated dataset curation and VD, the team
has collected two types of data: VFCs in Table 4 and vulnerable functions in Table 5.

4.1.1 Data Sources
In order to streamline the team’s efforts, the team has combined pre-existing
datasets curated by CVEfixes [10], Devign [2], BigVul [22], and ReVeal [26], chosen
because of their diversity and accuracy. This combination of datasets is based on the
work of DiverseVul, which also applied these datasets for their research. However,
they have yet to release their dataset to the public, hence why the team will be
collating them in this paper.

Although these datasets are high quality, they do have some limitations. Specifically,
CVEfixes and BigVul only contain VFCs as their data is sourced from security
issues. As a result, all non-VFCs in the combined dataset come from Devign, as
shown in Table 4. Therefore, the diversity for non-VFCs is significantly lower than
VFCs because Devign contains only two projects.

To address this imbalance of diversity, the team contributed to the combined dataset
by manually labelling an additional 3,500 commits from 10 distinct repositories on
GitHub.
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For ground-truth evaluation, the team extracted 1,827 VFCs from the Linux
repository using the Linux Kernel CVEs dataset3 and manually labelled an additional
500 non-VFCs.

These 10 repositories: FFmpeg, Git, Apache HTTP, ImageMagick, OpenLDAP,
OpenSSH, OpenSSL, Postgres, Redis, and Samba, were chosen because of their
significance and widespread usage in the industry, meaning that these projects are
well-established and frequently updated, hence providing a continual source of high
quality data. In addition, these projects cater to a wide range of applications, such as
operating systems, web servers, image processing, and more. Therefore, they face
diverse types of vulnerabilities. For instance, Apache HTTP is more likely to contain
web-related vulnerabilities like path traversals, whilst OpenSSL is more susceptible
to cryptographic bypasses and attacks.

The team collected and shuffled commits from these repositories made between
2015 and 2023, amounting to 177,279 commits. Then, the team’s five members
invested a total of 40 man-hours labelling these commits. Each member labelled
approximately 175 VFCs and 175 non-VFCs to maintain a balanced dataset. Similar
to Devign, the team makes use of keywords indicative of a VFC (Refer to Appendix
A), with the help of the regular expression search feature of Google Sheets, to
manually label these commits. Afterwards, the remaining unmatched commits are
sequentially labelled until the team’s target count is met. Additionally, the team
include commits mentioned in the security board and issue tracker of each project
where available, such as the Apache HTTP Server’s security vulnerability page4.

To ensure labels are of utmost precision, the team excluded any commits that were
vague or provoked any degree of uncertainty regarding its label. Then, the team
conducted a one cross-validation round where each member would validate the
labels of another member.

In the team’s dataset, the team made the distinction between vulnerability fixes and
bug fixes. The former is a subset of bug fixes and will have to be labelled differently.
For example, a commit that fixes a spelling mistake is considered a bug fix, but not a
vulnerability fix. During the team’s cross-validation stage, the team ensured that the
dataset followed this principle.

4.1.2 Dataset Processing
The CVEfixes5 dataset is an SQL dump and requires a few join queries to extract the
data, and where clauses were specified to only extract C/C++ commits and

5 https://doi.org/10.5281/zenodo.4476563

4 https://httpd.apache.org/security/vulnerabilities_24.html

3 https://github.com/nluedtke/linux_kernel_cves
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functions. The BigVul6, Devign7, and ReVeal8 datasets are available in CSV or JSON
format and required no major preprocessing steps, apart from renaming columns.
Then these datasets, along with the team’s manually labelled dataset, were merged
and deduplicated by their commit hashes, as shown in Table 4.

For more details on the steps used, see Appendix B for the data preprocessing
source code.

Table 4

Dataset VFC information

Dataset No. Projects VFCs Non-VFCs

CVEfixes 581 3,534 0

Devign 2 10,894 14,978

BigVul 247 4,310 0

Ours 10 1,737 1,763

Linux Kernel
CVEs 1 1,827 500

Combined
(deduplicated) 600 19,408 17,217

Note. The ReVeal dataset was excluded as it does not provide commits, only
functions.

4.1.3 Function Extraction
Devign, CVEfixes, ReVeal, and BigVul use commit granularity approaches to extract
vulnerable functions as these datasets source their data from Git repositories. They
each use different methods for extracting vulnerable and non-vulnerable functions
from commits, which is worth discussing.

Devign extracts modified functions from a commit based on their labels. For a VFC,
all modified functions in the commit are considered vulnerable. For a non-VFC, all
modified functions in the commit are considered non-vulnerable. CVEfixes also
applies this approach, but only for VFCs as their dataset does not contain non-VFCs.

In the case of BigVul and ReVeal, they extract both modified and unmodified
functions. All modified functions in VFCs are considered vulnerable. But unlike

8 https://drive.google.com/drive/folders/1KuIYgFcvWUXheDhT--cBALsfy1I4utOy

7 https://sites.google.com/view/devign

6 https://github.com/ZeoVan/MSR_20_Code_Vulnerability_CSV_Dataset
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Devign or CVEfixes, they label all non-modified functions in the parent commit of
VFCs as non-vulnerable. Figure 3 illustrates how ReVeal extracts functions.

Figure 3
Function Extraction Method of the ReVeal Dataset [26]

While similar, the second method results in datasets that are skewed towards
non-vulnerable functions, apparent in Table 5 as BigVul and ReVeal are heavily
imbalanced towards the latter. Class imbalance is often not ideal in DL classification
tasks and, as proven by Chakraborty et al. [26], balancing vulnerable function
datasets leads to better VD performance.

Table 5
Vulnerable Functions

Dataset No. Projects Vuln Functions Non-vuln
Functions

CVEfixes 508 6,430 0

Devign 4 16,549 16,484

BigVul 310 10,900 177,736

ReVeal 2 2,240 20,283

Combined
(deduplicated)

508 35,607 214,479

Note. The team received permission from DSO and an author of Devign to use the
unreleased version of their vulnerable functions dataset which contains two
additional projects.
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4.2 Model Development

4.2.1 Model Architecture
In LLM Transformers, there are 3 main sub-architectures which are Encoders,
Decoders, and Encoder-decoders.

In this project, the team will use the Encoder Transformer architecture. The team’s
project involves classification of source code and commit messages, which is the
inherent strength of Encoders. This is because Encoders are proficient at mapping
one input with another. On the other hand, architectures like Decoders are more
adept at predicting or generating outputs from inputs.

Encoder models are more effective at classification tasks and require less
parameters for similar performance. This means that the model size of Encoder
architectures are smaller and require less compute resources for training and
inference. This is especially beneficial for the project as the team will be building a
commit classification tool that should be lightweight enough for inference on
consumer hardware.

For Encoder-decoder models, they are as capable as Encoder models for text
classification and can reach similar performances [9]. However, Encoder-decoders
are more complex and require greater resources to train and infer.

4.2.2 Model Selection
Before the team began researching which Encoder models to use, the team first
consolidated several model criterias that would suit the team’s needs of source code
VD and VFC classification.

First, the team needed a model that is pre-trained. This is to streamline the team’s
efforts and maintain focus on the main objective as pre-training is a long and costly
process. Furthermore, using pre-trained models avoids warranting unnecessary
carbon emissions [27].

Second, the team requires the model to be open-source as it grants the most
flexibility for training, and also means that the work can be freely distributed to other
consumers.

Third, the model should be pre-trained on C/C++ and natural language as the team
will be training, evaluating, and comparing it with other C/C++ VD models, as well as
VFC classification.

Lastly, the model should not be hardware-demanding. It should ideally be small in
parameter size, without sacrificing significant performance drops.

To discover suitable models, the team researched journals on arXiv, blogs on
HuggingFace, and various online articles. Ultimately, two models were agreed upon:
StarEncoder [28] and DistilBERT [29]. Two models were chosen for VFC
classification, as commits are a blend both of natural and programming languages,
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though more so for natural language. As such, it is uncertain pre-training on
programming language will improve or negatively affect VFC classification
performance. Hence, the team includes both models as DistilBERT is trained on
solely natural language, while StarEncoder is trained on natural language and
source code.

The team aims to train, evaluate, and compare both, to find the best pre-training
objective for VFC classification. The best of which will be used for subsequent
experiments.

DistilBERT
DistilBERT is an open-source “distilled” version of the BERT model. Distillation is an
optimisation method that reduces the size of a language model, allowing for faster
training and inference. DistilBERT used this technique to reduce the size of the
BERT model by 40% while maintaining 97% of its original capacity, allowing for a
60% increase in speed.

These reasons make DistilBERT ideal for the team’s purposes as it will allow for
quick training and experimentation with little costs. Moreover, DistilBERT can be
easily run on consumer hardware due to its small size and low memory usage. Even
at high batch counts, DistilBERT can be trained without the need for costly ML-driven
GPUs.

StarEncoder
StarEncoder is an open-source model based on the BERT architecture. However
unlike DistilBERT, it was pre-trained on a substantial dataset comprising over 100GB
worth of code written in C/C++. This would enable the model to more effectively
comprehend and classify C/C++ source code to detect vulnerabilities.

StarEncoder is pre-trained on 74.93GB of markdown, 54.40GB of GitHub issues,
and 64.00GB of Git commits. The language used in such files is a mix of both
programming and natural language. Therefore, StarEncoder is very capable in
understanding code-related documentation (i.e., Git commits).

Other than C/C++, StarEncoder is also trained on 84 other popular programming
languages which total over 800GB of source code. This broad language coverage
will equip the model with the ability to understand very diverse codebases.

Summary
StarEncoder is more resource-demanding than the DistilBERT model, requiring twice
the memory size for inference. This means that experiments involving training will be
slower and tedious without the use of expensive ML-driven GPUs. However, the
team will proceed on with using StarEncoder because of its incredibly large and
relevant pre-training objective. DistilBERT will be used for experimentation purposes
and also evaluation alongside StarEncoder to conclude if pre-training a model on
code would allow it to perform better than one that did not for VFC classification.
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4.2.3 Model Training
The team made use of the HuggingFace Transformers library for model training as it
provides extensive Python APIs and libraries to easily interact with StarEncoder and
DistilBERT, download public datasets, and publicise the work done by the team.

To train these models, the team rented GPUs on RunPod.io. Afterwards, the team
utilised the Weights & Biases application to log and visualise model training
progress.

The following hyperparameters are shared in all training instances conducted in this
paper, unless stated otherwise.

● Precision: Half-precision Floating Point (FP16)

● Optimiser: AdamW

● Learning Rate Scheduling: Linear

● Weight Decay: 1e-2

● Seed: 420

The team used FP16 to speed up training and reduce computing costs. For the other
hyperparameters, they are commonly used in most general applications and the
team saw no need to modify them.

Vulnerability-Fixing Commit Classification
VFC Classification training will be broken down into two stages.

The first stage involves domain adaptation training with the Masked Language
Modelling (MLM) objective. The purpose of domain adaptation is to teach a
pre-trained model to learn the structure of a given domain, which in this case is
commit messages.

As illustrated in Figure 4, MLM involves randomly masking words from a sentence,
then having a model predict the possible words. MLM is often done using random
sampling where a percentage of words in a sentence are masked at random. In this
paper, the team randomly masks 15% of words, the same value used in StarEncoder
and the original BERT model [30].
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Figure 4
MLM Example (Hugging Face, n.d.)

MLM is a self-supervised task, meaning that it can be done without manually labelled
data. Hence, the team will train DistilBERT and StarEncoder for MLM using the
177,279 commits the team collected for manual labelling.

The following are the hyperparameters used in this project’s MLM training, excluding
the shared parameters covered previously:

● GPU: NVIDIA A100 40GB

● Number of Epochs: 20

● Learning Rate: 1e-4

● Batch Size: 256 (DistilBERT) and 128 (StarEncoder)

● Maximum Sequence Length: 256 Tokens

● Train Validation Split: 80/20

● Mask Probability: 15%

The team trains for 20 epochs as MLM usually takes a longer time to reach a perfect
fit. The learning rate the team used is a common value used for MLM. The batch
sizes used were the maximum batch size that would fit in the GPU. As DistilBERT is
smaller, more batches can be fit for training.

The usage of 256 tokens for the maximum sequence length was arrived at after
calculating the mean word count of commit messages in the dataset, which was
37.64. The standard deviation was 61.44 with the 75th percentile of commits being
over 64 words long. However, the token count is usually larger than the word count.
For instance, the word “fixing” can be divided into 2 tokens: “fix” and “ing”.
Additionally, programming language tokens often contain more tokens than natural
language. Therefore, a larger value of 256 should account for most of these inputs.

For the train validation split, the team used a higher split as 177,279 is a very large
dataset.
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Both models took a total of 2.2 hours for training and their train and evaluation loss
are shown in Figure 5. The team can see that StarEncoder better understands the
semantics of commit messages because it has a lower absolute loss value.

Figure 5
DistilBERT and StarEncoder MLM Loss Curves

After MLM, the second and last stage will be binary classification of VFCs. The team
uses the combined VFC dataset prescribed in Section 4.1.1.

The following are the hyperparameters used:

● GPU: RTX 3090

● Number of Epochs: 10

● Learning Rate: 1e-4

● Batch Size: 256 (DistilBERT) and 128 (StarEncoder)

● Maximum Sequence Length: 256 Tokens

● Train Validation Split: 90/10

Both models took a total of 40 minutes to train, and their train and evaluation loss are
shown in Figure 6. Signs of overfitting started around the 3rd epoch.
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Figure 6
DistilBERT and StarEncoder VFC Classification Loss Curves

Vulnerability Detection
VD is a task centred around source code and programming language. Therefore,
DistilBERT will not be trained for this purpose, only StarEncoder. Additionally, the
over 100GB of C/C++ pre-training done for StarEncoder means that domain
adaptation is not necessary. As such, this project will have a single stage training for
VD.

There will be a total of 3 StarEncoder models trained for VD in this project.

The first model will be trained on the public Devign function dataset consisting of
27,318 functions.

The second model will be trained on the dataset curated by the team’s VFC
Classification Tool, covered in Section 5.3.

Finally, the third model will be trained on the combined vulnerable functions dataset
from Table 5. Because this dataset is heavily imbalanced, random sampling is
applied to non-vulnerable functions to obtain the same amount of vulnerable
functions, totalling 71,214.

The following are the hyperparameters used:

● GPU: RTX 3090 Ti

● Number of Epochs: 10

● Learning Rate: 9e-6

● Batch Size: 45

● Maximum Sequence Length: 512 Tokens

● Train Validation Split: 90/10
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The team uses a learning rate much lower than the previous trained models as
previous works have pointed out that higher learning rates can result in a degenerate
model that only predicts one label.

A larger maximum sequence of 512 tokens was used as source code functions can
reach very large lengths. StarEncoder’s actual maximum is 1024 tokens, however,
increasing the input size results in more memory consumption. In doubling the
sequence length, the highest stable batch size we could use decreased to 45.

Figure 7 contains the loss curves of all 3 models. In total, these models were trained
on 129,142 functions which took 3.5 hours.

Figure 7
StarEncoder VD Loss Curves

4.3 Evaluation

4.3.1 Performance Metrics
In order to reliably assess and compare the classification performance of different
models, methods, or techniques, the team employed the use of the following set of
metrics that are standard in ML research:

Accuracy calculates the percentage of correct predictions made out of all
predictions made.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Precision calculates the percentage of data with the label “1” that were correctly
predicted.
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

Recall calculates the percentage of actual data with the label “1” that were correctly
predicted.

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

F1 calculates the harmonic means between precision and recall.

𝐹1 =  2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Weighted Average calculates the average in proportion to the labels.

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =  𝑖=1

𝑛
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Cosine Similarity calculates the similarity between two vectors.

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐴, 𝐵) = 𝑐𝑜𝑠(θ) =  𝐴 · 𝐵
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4.3.2 Train Test Split
In ML, datasets are split into train and test sets to determine the ability of a model to
generalise on unseen data. In this paper, the team uses splits for the vulnerable
function datasets gathered in Section 4.1. For the vulnerable functions dataset, the
team uses a 90-10 split. The team uses the Linux Kernel CVEs data for the unseen
VFC test dataset.

4.3.3 Other Comparisons
The team will compare the results of the team’s fine-tuned models against other
models and methods to assess the relative performance of the team’s
methodologies.
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Deep Learning Vulnerability-Fix Commit Classification
For VFC classification models, the team will compare them against three similar
models, PatchRNN [25], Random Forest Class Balancer [23], CodeBERT +
RoBERTa with distinct sequences [24].

Firstly, PatchRNN is a DL-based security patch identifier that utilises both text, in the
form of commit messages, and code, in the form of commit source-code diff.
PatchRNN uses a twin RNN model to generate code vector representations of
commit code diffs and uses NLP to process commit messages and TextRNN to
obtain vector representations of the commit messages. By using vectors, PatchRNN
is able to aggregate both code and natural language to the decision-making of the
DL model.

Secondly, Wang et al. created a DL-based vulnerability multi-class classifier, using a
large-scale dataset of CVEs from NVD. The classifier uses a machine learning
technique known as Random Forest, which utilises multiple decision trees to get a
majority vote from each individual decision tree, allowing for more accurate
predictions.

Lastly, Lee and Chieu [24] created a DL-based commit classifier that utilises
Co-Training, which is similar to Wang’s PatchRNN model. They separated the
responsibility of classifying commit messages and commit source-code diffs into 2
distinct sequences, CodeBERT for the code diffs and RoBERTa for the commit
messages. This leverages the abilities of both NLP Models and CodeBERT is
pre-trained with mostly code whereas RoBERTa is pre-trained mostly with natural
language.

Conventional Vulnerability-Fix Commit Classification
Additionally, the team’s models will be compared against two distinct classification
methods, Regular Expressions and Machine Learning embeddings.

The first is LICA [19], an open-source project that analyses Linux kernel commit
messages for vulnerability fix commits using regular expression. It implements a
rule-based approach for text classification, meaning that it uses predefined rules or
keywords. LICA‘s rules were developed for the Linux Kernel repository, and as
different repositories have disparate types of vulnerabilities, these rules do not
generalise well to repositories, hence, the team forked the project and modified it
with additional keyword filters. Other than that, the team also modified LICA to output
performance metrics for the test datasets. The team named the original version LICA
v1 and the modified version LICA v2.

The second method is using semantic search with SOTA DL embeddings [31].
Semantic search is used to query against a corpus and retrieve the top most𝑘
similar results using cosine similarity. This approach involves converting a corpus of
texts into word embeddings. Word embeddings is a method to represent and
associate words in a high dimensional vector that encapsulates its semantic
information. At a basic level, they are labels given to each word in a sentence,
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derived from its meaning in the context of its sentence. This allows for text
classification using semantic search queries.

To create a semantic search tool that is suited for comparison, the team utilised
Chroma, a vector database used for storing, searching and retrieving high
dimensional vectors alongside 2 different word embedding models all-MiniLM-L6-v2
and text-embedding-ada-002 from SBERT and OpenAI respectively. These
embedding models are chosen primarily because they generate embeddings at
sentence level which can better understand the semantic of the commit messages
and they also have great balance in terms of performance and size.

Vulnerability Detection
The team’s StarEncoder VD models will be compared with the models trained in
DiverseVul. This paper has emulated most of the crucial elements in their research:
datasets used, training hyperparameters, and function extraction method.

Additionally, the team will compare the StarEncoder VD models with Callisto, a
rule-based code analysis tool using Semgrep.
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5 Experimentation & Findings

5.1 Vulnerability-fix Commit Classification

The 3rd and 10th epoch checkpoints of the StarEncoder and DistilBERT VFC
classification models were selected as, according to Figure 6, both models showed
signs of overfitting due to the divergence of train and evaluation loss curves.

Table 6 shows the results of these model checkpoints on their validation dataset split
during training.

Table 6
Results for DistilBERT and StarEncoder, Evaluated on the Validation Split Dataset

Model Acc
Prec Recall F1

Weighted Avg Weighted Avg Weighted Avg

DistilBert
(3 epochs) 96.40 96.79 96.26 96.53

StarEncoder
(3 epochs) 97.29 97.76 97.00 97.38

DistilBert
(10 epochs) 97.13 97.78 96.67 97.22

StarEncoder
(10 epochs) 97.70 98.41 97.14 97.77

Table 7 shows the results of these model checkpoints on the Linux Kernel CVEs test
split from Section 4.3.2.

Table 7
Results for DistilBERT and StarEncoder, Evaluated on Linux Kernel CVEs Dataset

Model Conf. Matrix Acc
Prec Recall F1

Weighted Avg Weighted Avg Weighted Avg

DistilBert

(3 epochs)

TP
1,783

FP
44

FN
309

TN
194

84.85 84.00 85.00 83.00
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StarEncoder

(3 epochs)

TP
1,715

FP
112

FN
126

TN
377

89.79 90.00 90.00 90.00

DistilBert

(10 epochs)

TP
1,773

FP
54

FN
259

TN
244

86.57 86.00 87.00 85.00

StarEncoder

(10 epochs)

TP
1,668

FP
159

FN
110

TN
393

88.45 89.00 88.00 89.00

Based on Table 6 and Table 7, the team can make the conclusion that pre-training
on source code increases VFC classification performance as StarEncoder,
trained on 64 GB of source code, consistently outperforms DistilBERT in all
categories, with the most extreme being StarEncoder (3 epochs) that scored an F1
score 7% higher than DistilBERT (3 epochs).

Additionally, on the test dataset, the team can observe that the StarEncoder (3
epochs) scores higher overall than the 10th epoch StarEncoder model. This means
further facilitates that at epoch 10, the model is overfitted. Hence, the following
sections will use the 3rd epoch of StarEncoder for comparison with other models and
methods.

5.1.1 Comparison with Other Models
The team compared StarEncoder with similar models, described in Section 4.3.3, for
VFC classification, shown in Table 8.

Table 8
VFC Classification Comparison with Other Models

Model Training Dataset Acc F1

Random Forest Class
Balancer NVD, C Language 54.75 48.50
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CodeBERT +
RoBERTa

900Repo Dataset,
Mixed Language 87.40 83.90

PatchRNN PatchDB, C and C++
Language 83.57 74.70

StarEncoder

(3 epochs)

BigVul, CVEfixes,
Devign, and the
team’s dataset

89.79 90.00

The results above in Table 8 shows that StarEncoder performs significantly better
overall compared to 3 other models for VFC classification. On average, StarEncoder
scores 14.55% accuracy and 20.97% F1 higher than other models.

5.1.2 Comparison with Other Methods
The team compared the trained StarEncoder model with other methods, described in
Section 4.3.3, used for VFC classification. Table 9 contains the evaluation results for
the validation split, and the results for the Linux Kernel CVEs dataset in Table 10.

Table 9
VFC Classification Evaluation Results with Other Methods On Validation Split
Dataset

Model Conf. Matrix Acc
Prec Recall F1

Weighted Avg Weighted Avg Weighted Avg

LICA v1

TP
62

FP
1

FN
3,493

TN
3,442

50.07 74.00 50.00 34.00

LICA v2

TP
953

FP
168

FN
2,602

TN
3,275

60.41 71.00 60.00 55.00

Semantic

Search

(all-MiniLM-

TP
2,793

FP
919

76.05 78.00 76.00 76.00
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L6-v2) FN
757

TN
2,524

Semantic

Search

(text-embed
ding-ada-00

2)

TP
2,888

FP
890

FN
667

TN
2,553

77.75 78.00 78.00 78.00

StarEncoder

(3 epochs)
- 97.29 97.76 97.00 97.38

Table 10
VFC Classification Evaluation Results with Other Methods On Linux Kernel CVEs
Dataset

Model Conf. Matrix Acc
Prec Recall F1

Weighted Avg Weighted Avg Weighted Avg

LICA v1

TP
136

FP
1

FN
1,691

TN
502

27.38 83.00 27.00 19.00

LICA v2

TP
918

FP
42

FN
909

TN
461

59.18 82.00 59.00 62.00

Semantic

Search

(all-MiniLM-
L6-v2)

TP
1,636

FP
197

FN
191

TN
306

83.34 83.00 83.00 83.00
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Semantic

Search

(text-embed
ding-ada-00

2)

TP
1,688

FP
188

FN
139

TN
315

85.96 86.00 86.00 86.00

StarEncoder

(3 epochs)

TP
1,715

FP
112

FN
126

TN
377

89.79 90.00 90.00 90.00

As shown in Table 9 and 10, LICA v1 is able to achieve subpar accuracy levels on
the Combined VFC Dataset, however, its accuracy experiences a notable drop when
evaluated against the Linux Kernel CVEs Dataset. This is unusual as the default
filters of LICA should be apt towards the Linux Kernel. Therefore, this may be an
indication that the default filters on LICA are not thorough enough to cover the entire
Linux Kernel. Furthermore, its high precision with extremely low F1 score on both
datasets is an indication of class bias as it makes more correct predictions towards a
certain class compared to another.

For LICA v2, the team’s updated keyword filter has resulted in an overall
improvement on both datasets. Despite the improvements made by the team, LICA
should be able to achieve even better results given more time spent to refine its
filters.

As for the semantic search methods, both embedding models yield comparable
results, with the text-embedding-ada-002 embedding model slightly outperforming
the all-MiniLM-L6-v2 model. This is an indication that the type of general embedding
model does not noticeably affect the overall results for VFC classification.

Lastly, the StarEncoder model is shown to outperform all the other classification
techniques with a higher average accuracy and F1 of 28.63% and 31.88%
respectively. This large difference in scores between the team’s model and others
methods provides empirical evidence that the team’s model is the most optimal
solution for VFC classification.

5.2 VFC Classifier Prototype

The team developed this classifier tool with 2 features: VFC classification and
function extraction. The tool can be downloaded or cloned using the team’s GitHub
repository (Refer to Section 1.3 footnotes). Additionally, the installation, setup, and
instructions are all included in the README.md file.
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5.2.1 Classification
Running the Command
Figure 8
VFC Classifier Prototype Classification

Figure 8 demonstrates how to classify commits using the team’s tool on the
command-line:

1. The program takes in either a line-separated file of GitHub repository URLs,
or a single URL string (“--input | -i”). This option can be specified multiple
times.

2. The program will clone the repository(s) locally into a configurable directory. If
the repository already exists, any changes will be pulled instead.

3. The program then initialises the classifier model with HuggingFace
Transformers. The program will use either the machine’s GPU, if configured
with NVIDIA CUDA, or CPU.

4. The program then starts reading the commit history from the local Git
repositories and feeds it to the model to classify VFCs. The user can specify
the classification threshold as a float between 0 and 1, which is 0.5 by default.

5. The program uses Python Pandas to write the result, along with other useful
commit metadata, to the output file. The file format is described in Table 11.
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Table 11
VFC Classifier Prototype Commit Output Format

Column Name Type Description

is_merge Boolean Whether commit is a
merge

commit_msg String The commit message

commit_hash String The commit hash

commit_url String The commit URL on
Github

repo_url String The commit’s repository
URL on GitHub

date String The date the commit was
written

labels Integer 1 = VFC
0=non-VFC

vulnfix Integer The softmax value of the
model's vulnerability-fix

prediction

non-vulnfix Integer The softmax value of the
model’s

non-vulnerability-fix
prediction

Options
The team designed the tool such that any VFC classification model can be used by
specifying the “--checkpoint” flag, which accepts a HuggingFace model ID. By
default, it uses the team’s fine-tuned StarEncoder (3 epochs) model.

All classification options can be viewed using the “--help” option, as shown in Figure
9.
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Figure 9
VFC Classifier Prototype Classification Help

Notable Features
The StarEncoder model is 500MB in size, however, the team managed to reduce the
in-memory size to around 200MB after optimization with the HuggingFace Optimum
library. This allows the classifier to run at very fast speeds. For reference, on an RTX
2060, the team classified 600,000 commits from 50 different repositories in just over
an hour.

Additionally, the team implemented batching to prevent over-consumption of system
memory when the program is run on very large repositories. Dates can also be
specified to reduce the number of commits to be classified.
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5.2.2 Function Extraction
Running the Command
Figure 10
VFC Classifier Prototype Function Extraction

Figure 10 shows how to extract functions from classified commits using the “extract”
command:

1. The command accepts a file that follows the format in Table 11, i.e., a file of
classified commits.

2. The command will fetch source code, method name, and line change data to
extract functions in commit

3. Python Pandas is then used to write the functions into a file. The file’s format
is shown in Table 12.

Table 12

VFC Classifier Prototype Extracted Functions Format

Column Name Type Description

labels Integer 1 = VF
0 = Non-VF
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preds Integer 1 = VF
0 = Non-VF

name String Function name

symbol String Function symbol

parameters String Function parameters

start_line Integer Start line of the function

end_line Integer End line of the function

function String Function source code

filename String The filename containing
the function

path String The path to the file in the
repository

token_count Integer The amount of individual
components of a function,
e.g. variables, operators,

etc

repo_url String The commit’s repository
URL on GitHub

commit_msg String The commit message

commit_hash String The commit hash

commit_url String The commit URL on
GitHub

date String The date the commit was
written

file_url String The commit file URL on
GitHub

Note. VF = Vulnerable Function

Options
The “extract” command allows for 2 different function extraction methods. By default,
it uses the same approach as Devign which only extracts modified functions in a
commit. Using the “--extract-nonvuln-from-vulnfix” option, the BigVul function method
is used which extracts all non-modified functions in a VFC and labels them as
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non-vulnerable functions. For more detailed instructions and options on running the
function extraction command, the “--help” flag can be used, as shown in Figure 9.

Figure 11
VFC Classifier Prototype Function Extraction Help

Notable Features
This command uses the PyDriller library to extract and parse diffs, source code, and
metadata from a commit. This is the same library used in CVEfixes.

5.3 Dataset Curation

To demonstrate the effectiveness of dataset curation using LLMs for VD, the team
has curated a vulnerable functions dataset using the VFC Classifier Prototype.
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More specifically, the team created a list of the top 50 C/C++ repositories sorted by
their CVE count using the CVEfixes dataset (Refer to Appendix B). Then, this list
was fed into the Classifier program and collected 639,278 commits.

Since the team only needed enough functions to double the size of the Devign
dataset, 24,000 commits were randomly sampled. Then, the BigVul function
extraction method was run, collecting a total of 503,320 functions. This data is
summarised in Table 13.

Table 13
VFCs Curated by Classifier Tool From 50 C/C++ Repositories

No. Projects VFCs Non-VFCs Vuln Funcs Non-vuln
Funcs

50 232,288 406,690 15,305 488,015

VFC classification and function extraction took slightly over 2 hours, and managed to
curate a significantly large dataset size compared to Devign, which took 600
man-hours of labelling.

To balance the dataset, 15,305 non-vulnerable functions were randomly sampled.
Then, these 30,610 functions were then combined with the Devign functions dataset.

5.4 Vulnerability Detection

This section will conduct two experiments. The first experiment will aim to
demonstrate the effectiveness of datasets curated using DL-based classification of
VFCs. The second experiment will evaluate the performance of StarEncoder, an
Encoder model, for VD, as well as its performance relative to other similar models
and methods.

5.4.1 Evaluation of Dataset Curated using DL
Table 14 contains the evaluation results of the base StarEncoder model trained on
the Devign dataset. Then, another StarCoder model is additionally trained on the
dataset curated by the VFC Classifier in the previous section. These models were
evaluated on the 10th epoch using the combined functions 10% test split dataset.

These results show that increasing the Devign dataset size with the VFC Classifier
leads to an overall increase in performance. Therefore, this proves that the team’s
approach to DL-based dataset curation is effective at improving VD
performance.
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Table 14
StarEncoder VD Evaluation Results Trained on Curated Dataset

Dataset Conf. Matrix Acc
Prec Recall F1

Weighted Avg Weighted Avg Weighted Avg

Devign

TP
2,521

FP
1,060

FN
2,442

TN
1,099

50.83 51.00 51.00 49.00

Devign and
Curated
Dataset

TP
1,782

FP
1,799

FN
826

TN
2,715

63.14 64.00 63.00 62.00

5.4.2 Evaluation of StarEncoder
Comparison with Other Models
Table 15 contains the evaluation results of the base StarEncoder model trained on
the team’s combined functions dataset. Several other models trained by DiverseVul
are included for comparison. All models use a 80-10-10 train, validation and test
split. The results shown are on said test split.

Table 15
StarEncoder VD Evaluation Results Compared with DiverseVul Models

Model Training
Dataset Acc

Prec Recall F1

Weighted Avg Weighted Avg Weighted Avg

GPT-2 Base BigVul,
CVEfixes,
Devign,
ReVeal,
CrossVul

91.21 47.14 20.30 28.38

CodeT5 Base 91.49 50.53 37.02 42.74

CodeBERT 90.49 42.69 28.15 33.93

StarEncoder
BigVul,

CVEfixes,
Devign,

89.40 89.00 89.00 89.00
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ReVeal

Note. Adapted from DiverseVul [9].

The results in Table 15 show that although the DiverseVul models use very similar
training datasets, there is a stark difference in performance as the team’s trained
model managed to significantly outperform theirs.

This is likely attributed to 3 reasons, the first being that DiverseVul uses an
extremely imbalanced dataset. The second being that, although not specified in their
paper, they might not have deduplicated functions by their labels, which causes
vulnerability-introducing non-VFC functions to be present in the dataset. The last is
their usage of Encoders that were not trained on C/C++

Comparison with Other Methods
Table 16 contains the evaluation results of the team’s StarEncoder VD model and
Callisto. Both were evaluated on the 10% test split of the combined vulnerable
functions dataset.

Table 16
StarEncoder VD Evaluation Results Compared with VD Methods

Model Conf. Matrix Acc
Prec Recall F1

Weighted Avg Weighted Avg Weighted Avg

Callisto

TP
1545

FP
1025

FN
2036

TN
2516

57.02 58.00 57.00 56.00

StarEncoder

TP
3,209

FP
372

FN
372

TN
3,158

89.40 89.00 89.00 89.00

The results shown above further prove the effectiveness of the team’s training
methodology. In addition, it demonstrates the proficiency of StarEncoder, or SOTA
Encoders as a whole, in effective VD.
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6 Discussion

6.1 Issues

There were two major issues faced during the project. The first was an issue with the
PyDriller library for function extraction.

When randomly sampling functions extracted by PyDriller, the team noticed that
some functions did not start or end on the correct lines. Using Pandas to filter, the
team discovered that approximately 2% of the functions in the team’s dataset
curated in Section 5.3 suffered from this error.

Thankfully, the team managed to catch on to this anomalous behaviour before
committing to an hour long training session. These data points were removed from
the dataset.

The second issue we noticed was the VFC Classification models’ inability to discern
bug fixes from vulnerability fixes. For instance, the commit message “Fix spelling
error in CVE-2022-1038 security patch notes” would be misclassified as a VFC.
However, this should be taken with a grain of salt as this commit was one hand
crafted to test the VFC models. Additionally, the occurrence of such commits in
real-world scenarios is likely very low. With that said, the team’s StarEncoder VFC
model is still able to discern less nuanced bug fixes and VFCs, such as “Fix spelling
error” which is correctly classified as a non-VFC.

6.2 Future Work

6.2.1 Future Plans and Goals
Implement classifier tool for line granularity for VD
The current state of the team’s VD model is only able to perform binary classification
at function level. By solely providing the prediction of whether the function is
vulnerable or not does not offer substantial assistance in identifying the underlying
cause of the vulnerability. Thus, further analysis and understanding on the function
deemed vulnerable is required by developers to truly identify the root cause to the
vulnerability.

A solution to eliminate this burden is to enable line granularity on the VD to pinpoint
the exact line of code that the model classifies as vulnerable. This can be achieved
by modifying the team’s existing VFC model to extract code changes made in a
vulnerability fix commit. With these commit messages, the team can use it to further
train on existing line granularity VD models such as LineVD.
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6.2.2 Areas of Improvement
Training the vulnerability detection model on more programming languages
Software development today involves a wide variety of programming languages,
each with unique characteristics, syntax, and usage scenarios. While C/C++ is about
53% of programming language CVE statistics, the other 47% of programming
languages include Python, PHP, Javascript, Java, among others as seen in Figure
12. All of these programming languages include its own set of common bugs, and
vulnerabilities which can significantly differ from each other.

Figure 12
CVE Count By Language

By expanding the dataset of vulnerable functions, the team’s VD models can
understand more programming languages, making it applicable to more software
projects.

Furthermore, diversifying the languages that the tool can handle would enable richer
insights and comparisons across the multitude of languages, possibly revealing
language specific trends of how bugs are introduced and fixed, leading to a better
understanding of software vulnerabilities, aiding in their prevention and resolution.

Another approach the team could take is to evaluate if the current model is able to
predict vulnerable functions in other languages to a certain extent. As StarEncoder is
already pre-trained on many different programming languages, it may be able to
identify vulnerable functions in other programming languages, through non-syntactic
means.

Real Time Commit Classification
Currently, the team's git commit classification tool needs to run manually in a
command line interface where the user can input a list of git repositories URL
through a text file or a single URL directly as input. This method, although useful,
may not be efficient. It would be more efficient to transition into a real-time system
that classifies each commit as it is being pushed into each repository. With this

42



system in place, end-users or repository maintainers could receive notifications
regarding potential bugs or vulnerabilities fixes immediately after making the commit,
which can be helpful in prompt updating or additional rectifications.

Integration into development platforms
Numerous developers utilise Integrated Development Environments (IDEs) such as
Visual Studio Code or Eclipse IDE or source control management platforms like
GitHub. The further development of plugins or extensions that could be integrated
directly onto these platforms would enhance the accessibility, usability and ease of
use of the team's tools.

For example, a plugin could be designed to automatically activate the bug finder on
the currently opened code file in the IDE. Alternatively, a GitHub integration might be
developed to automatically classify each new commit as it is pushed into the
repository. Such integrations would provide a more convenient and timely means of
detecting bugs early in the development process.

6.3 Applications

The ground-truth VFC and vulnerable function datasets the team had manually
labelled, and collated from past works, can be built upon by future researchers or
provide a strong foundation for security-related works.

DL-based commit classification allows for higher accuracy, faster labelling, larger
dataset sizes, and increased diversity. Therefore, the commit classifier the team has
developed can supplement a wide range of security-related research, not limited to
VD. To list a few examples: training vulnerability patching models, creating a security
benchmark for evaluating VD models, summarisation and explanation of vulnerable
code, can all be done with modifications to the team’s tool. In our case, the team
applied DL-based commit classification to curate a dataset of vulnerable functions,
and improved the accuracy of a VD model.

Whilst the VD models created by the team or from past works may not be effective
now, as the performance of DL models improve, using them for VD becomes more
and more viable. This will be revolutionary for software development security as it
requires lower costs, no human training, and can quickly conduct secure code
reviews. Lastly, the trend of ML democratisation will make these models widely
available, globally improving software security assurance.
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7 Conclusion
This research project has shown that LLMs are incredibly versatile. Not only can they
be used for VD, but they can also be used to curate datasets to train themselves.

Using the VFC Classifier, thousands of accurately labelled VFCs and vulnerable
functions can be extracted within a few minutes.

The team demonstrated that the use of SOTA Encoder models for VD, combined
with class balancing and deduplication allow for performance that far exceeds
existing implementations.

The findings in this project can be used to supplement VD-related research by
streamlining dataset curation.
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Appendix

Appendix A

VFC Keywords

Figure A1
Keywords used in Devign [2]

Figure A2
Keywords Used in This Project
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Appendix B

Dataset Processing Details

CVEfixes SQL Queries
Figure B1
Extract commits from CVEfixes

SELECT *

FROM commits AS c

JOIN repository as r ON c.repo_url = r.repo_url

JOIN file_change as fc ON c.hash = fc.hash

WHERE (fc.programming_language = 'C' OR fc.programming_language =
'C++')

Figure B2
Extract functions from CVEfixes

SELECT *

FROM commits AS c

JOIN file_change AS fc ON c.hash = fc.hash

JOIN method_change AS mc on fc.file_change_id = mc.file_change_id

WHERE (fc.programming_language = 'C' OR fc.programming_language =
'C++')

Figure B3
Extract C/C++ repositories and their CVE count

SELECT r.repo_url,

r.repo_language,

COUNT(DISTINCT c.hash) AS num_cves

FROM repository AS r

JOIN commits AS c on r.repo_url = c.repo_url

JOIN fixes AS f ON c.hash = f.hash

WHERE r.repo_language IN ('C', 'C++')

GROUP BY r.repo_url, r.repo_language

ORDER BY num_cves DESC;
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Dataset Merging
Figure B4
BigVul Preprocessing Steps for Commits

bigvul_commits = pd.read_csv("data/all_c_cpp_release2.0.csv")

bigvul_commits = bigvul_commits[["commit_message", "commit_id",
"project"]]

bigvul_commits["source"] = "bigvul"

bigvul_commits["labels"] = 1

bigvul_commits = bigvul_commits.rename(

columns={

"commit_id": "commit_hash",

"commit_message": "commit_msg",

}

)

bigvul_commits["project"] = bigvul_commits["project"].str.lower()

bigvul_commits = bigvul_commits.dropna(subset=["commit_msg"])

Figure B5
BigVul Preprocessing Steps for Functions

bigvul_functions = df[

[

"func_before",

"commit_id",

"codeLink",

"project",

"vul",

]

]

bigvul_functions["source"] = "bigvul"

bigvul_functions = bigvul_functions.rename(

columns={

"func_before": "function",

"commit_id": "commit_hash",

"codeLink": "commit_url",
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"vul": "labels",

}

)

bigvul_functions["project"] =
bigvul_functions["project"].str.lower()

bigvul_functions["repo_url"] = None

bigvul_functions["commit_date"] = None

bigvul_functions=bigvul_functions.dropna(subset=["function",
"commit_hash"])

Figure B6
Dataset Merging and Deduplication

combined_commits = pd.concat([bigvul_commits, devign_commits,
cvefixes_commits, our_commits])

combined_commits =
combined_commits.drop_duplicates(subset=["commit_hash"])

combined_functions = pd.concat([bigvul_functions,
devign_functions, cvefixes_functions, reveal_functions])

combined_functions =
combined_functions.drop_duplicates(subset=["function",
"commit_hash"])

Figure B7
Remove duplicate functions with different labels

def remove_duplicates(x):

return not x['labels'].nunique() > 1

combined =
combined.groupby('function').filter(filter_duplicates).shape
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